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Abstract
An approach to finite difference approximation is presented based on the idea of fitting the

dispersion relation up to a limiting accuracy.  The resulting approximations to the second

derivative can be more accurate than the standard, Lagrangian finite difference

approximations by an order of magnitude or more.  The locality of the methods makes them

well suited to parallel computation, in contrast with pseudospectral methods.  The approach

is illustrated with application to a simple bound state problem and to a more challenging

three dimensional reactive scattering problem.  
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I.  INTRODUCTION

Grid representations are common in quantum mechanical studies of molecular

spectroscopy and dynamics,1-5  and many other areas of science and engineering.6,7  In

molecular quantum mechanics, our main interest, grid representations are well suited to

iterative methods,   e.g.,  the Lanczos method8  for bound states and wave packet methods

for dynamics,9 because they lead to favorable computational scalings.   Iterative methods

involve repeated actions of a Hamiltonian matrix, H, on a wavefunction or wave packet

represented as a vector y of function values at the grid points.   These repeated Hy products

are the computational bottleneck.  The numerical effort is largely determined by the choice

of representation and how H is approximated.  Often H is decomposed into kinetic and

potential matrices, H = T + V, with V approximated by a diagonal matrix. The main issue is

then how to approximate the action of the kinetic energy matrix, Ty.  For Cartesian like

degrees of freedom T is proportionate to a second derivative matrix, D''.  We present here a

new,  accurate and efficient method for approximating the kinetic energy matrix and its

action,  within the context of finite difference (FD) ideas. 10-13

In current molecular quantum mechanics, FD methods are  less commonly used

than pseudospectral methods.1 4  Pseudospectral methods represent a function and its

derivatives not only in terms of values at grid points, but in terms of an underlying spectral

or basis set representation.  The classic pseudospectral method is the Fourier method,1,2,14

wherein to evaluate D''y, y is transformed into a Fourier (spectral) representation, multiplied

by a diagonal matrix corresponding to D'' in that representation, and then transformed back

to the grid representation.  The basis need not be a Fourier basis, and one need not explicitly

transform to and from the spectral representation but develop a (grid) matrix representation

of D'' consistent with the basis.  In this sense, other discrete variable representations

(DVRs) 3,4,15 are pseudospectral methods.  Whereas  FD methods are local approximations
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to derivatives, such  pseudospectral methods are global approximations and the second

derivative matrix with respect to one degree of freedom,  D'',  is a full matrix.  (When several

degrees of freedom are treated, and the kinetic energy operator is of a typical form, the

overall kinetic energy matrix is not full but factors into blocks corresponding  to the

different degrees of freedom.)  The inherent locality of derivatives, however, suggests local

methods should suffice.  FD methods represent D'' with banded matrices of varying degrees

of sparsity, which may result in significant computational gains.  They are easily

programmed, and portable.  Another compelling reason for considering FD methods is their

potential, by reducing the amount of communication between processors, to vastly improve

the scalability of parallel computing algorithms.   The significance for chemical physics

research is that the  high performance (parallel) computing environment can then be used to

tackle large (four or more atoms ) molecular quantum mechanics problems. 16-18

Kosloff19,20 pointed out that, unlike the Fourier method, FD methods do not in

general obey the correct dispersion relation, a matter we discuss below.  He also showed

how the Fourier method can vastly outperform the standard FD approach, particularly if

high accuracy is desired. The success of the Fourier method and other pseudospectral

methods,  combined with the limitations of FD methods has prevented FD methods from

receiving a great deal of attention for quantum chemical applications.

If low order  FD methods are used, accuracy is achieved by decreasing the grid

spacing.  Alternatively,  accuracy can be obtained by using higher order FD  methods. For

example, Thachuk and Schatz10  explored the use of higher order FD methods for

calculating thermal rate coefficients. They showed that under certain circumstances, FD

methods are competitive with the Fourier method (applied with fast Fourier transforms).

Mazziotti1 1 compared several high order local methods including the FD method.  Applied

to accurate calculations of energy levels of a Morse oscillator, he showed that high order FD

methods can approach pseudospectral accuracy, while exhibiting exponential convergence

with increasing order.  Guantes and Farantos12,13 presented an interesting, thorough
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investigation of FD methods for solving the time-dependent Schrödinger equation in two

and three dimensional systems.

A  more general type of local method that has been used in a number of applications

is the distributed approximating functional (DAF) approach of Kouri and co-workers.21-24

The Lagrangian DAF is perhaps most closely related to the FD methods.22-24  

Our approach to FD methods is different from those above, which are based upon

interpolating functions such as Lagrange polynomials.  We believe that FD approaches are

most useful for applications that  do not require extremely high accuracy. There are many

such applications in chemical dynamics, e.g., we are generally very satisfied to compute

reaction probabilities to three or four decimal places. Our approach embraces this idea of a

limiting accuracy, fitting the FD dispersion relation to the correct one for a range of

momenta consistent with a specified accuracy.  Our goal is to find a method requiring

neither very small grid spacings nor very high order to obtain observables within a desired

accuracy.  We should note that the idea of fitting a dispersion relation to obtain FD

coefficients  has been used before in other areas such as acoustic wave propagation. For

example, Tam and Webb,25 and Zingg and co-workers26  developed some first derivative

approximations using the idea.

Section II presents theory (Secs. IIA-C), discusses computational and efficiency

issues (Secs. IID, E), and shows how to treat energy resolved scattering (Sec. IIF).  

Numerical examples are given in Sec.  III, including  application to three-dimensional

reactive scattering .  Sec.  IV concludes.

II. THEORY

A.  Finite difference (FD) second derivative approximation

Consider  an N-point grid in the interval (a,b)
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xi = x0 + i D , i = 1, 2, …, N, (1)

with

D =
b - a
N +1

=
L

N + 1 . (2)

The end points a and b are not among the N grid points, with boundary conditions such that

the represented function is zero at a and b.  This grid is consistent with an underlying sine

basis or spectral representation,1 5 although other grids consistent with, for example, periodic

boundary conditions and complex exponential basis functions could be considered.  We are

interested in FD approximations to the second derivative of some function y(x) defined on

the grid as yi = y(xi).  Let  y denote the N x 1 column vector of components  yi  and y''

denote the column vector of  approximate second derivative components,  y"i

ª ∂2y / ∂x2( )x = xi
.  A  2n+1 point FD approximation  is

y''  = D'' y , (3)

where D '' is a symmetrically banded matrix with non-zero elements of the form
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D" =
1
D2

d0 d1 ... dn
d1 d0 d1 ... dn
... d1 d0 d1 ... dn
dn ... d1 d0 d1 ... dn

dn ... d1 d0 d1 ... dn
dn ... d1 d0 d1 ... dn

dn ... d1 d0 d1 ... dn
dn ... d1 d0 d1 ... dn

dn ... d1 d0 d1 ...
dn ... d1 d0 d1

dn ... d1 d0

Ê 

Ë 

Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á 
Á Á 

ˆ 

¯ 

˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ 
˜ ˜ 

   . (4)

D '' can be writtien as

D ''  = 1
D2 s=0

n
Â D s

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ . (5)

where  each Ds is a banded matrix of the form

Ds( )i,j = ds d|i-j|,s .  (6)

It is possible to show1 2  (see also Appendix A) that a dispersion relation consistent with Eq.

(5) is

f(k) = 1
D2 d0 + 2 ds cos(skD)

s=1

n
Â

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
    , (7)

where k is the wave number (momentum =   h k)  that, for our finite grid representation, takes

on magnitudes

k = kj  = j p /L  = j p /[(N+1)D],    j = 1, 2, …, N. (8)
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The dispersion relation, Eq. (7),  is a relation between the wave number and the eigenvalue

spectrum of D''.  (For finite sized D'', Eq. (7) is not precisely the eigenvalue spectrum unless

certain “edge” corrections are applied as discussed in Appendix A.)

The Fourier method,1,2,14 i.e., the evaluation of the second derivative utilizing Fourier

transforms, leads to the correct dispersion relation for the underlying continuous problem,

fex(k) = - k2   .  (9)

 The accuracy of the Fourier method is due to this fact. When implemented with Fast

Fourier Transforms (FFTs) it is also efficient, with effort scaling quasilinearly in N as

O[Nlog2N].   In contrast, the FD dispersion relation, Eq. (7), deviates from fex(k) for

sufficiently large k, as illustrated in Fig. 1.  An FD approximation also has favorable scaling

that is explicitly linear in N, O[(2n+1) N] (see Sec. IID).   

B.  Familiar FD methods as fits to the dispersion relation

FD approximations are typically viewed as (2n+1) point interpolation formulae of

y(x).10-15   We can also view them as arising from fits of the FD dispersion relation, Eq. (7),

to the correct relation, Eq. (9).  The standard (Lagrangian) FD approximations, for example,

result from Taylor series expanding Eq. (7) about k = 0,

f(k) = 1
D2 d0 + 2 ds

s=1

n
Â

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ - s2

s=1

n
Â ds

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ D2 k2 +

2
4!

s4
s=1

n
Â ds

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ D4k4 - ...

È 

Î 
Í 
Í 

˘ 

˚ 
˙ 
˙ 
   , (10)

and,  of the first n+1 non-zero (even) terms in the series, equating all to zero except the k2

term, which is equated to -1.  For n = 2 this results in the three linear equations
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d0 + 2 d1 +2d2 = 0
d1 + 4d2 = 1
d1
12

+
4d2

3
= 0

which yield d0 = -30/12, d1 = 16/12, and d2 = -1/12, the standard  5-point FD result.  In

terms of the actual second derivative approximation, the error of such a classical 2n+1 point

FD  approximation is of order D2n.  While analytical formulae exist for the Lagrangian FD

coefficients of any order,10,15  for convenience and later comparison with our results,  Table

I lists coefficients corresponding to several other Lagrangian FD approximations.  

The  right hand side of Eq. (7)  is also a cosine series.  As noted by Guantes and

Farantos, 1 2   the standard cosine series

q2 =
p2

3
+ 4 -1( )s

s2 cos sq( )
s=1

•
Â  , (11)

with q = kD,  when equated with f(k) D2, leads to the ds coefficients of the generic DVR

given by Colbert and Miller, 1 5 i.e., d0 = -p2/3, d1 = 2, etc.  It  is also known as the sinc-

DVR and has been discussed by Boyd.27-29    In molecular quantum mechanics, however,

the sinc-DVR is generally used as a full rather than a banded matrix and gives results with

accuracy comparable to the Fourier method.

C.   Dispersion fitted finite difference method

     The standard FD  approximation10-13  and a banded sinc-DVR27-29  are two extremes

regarding the dispersion relation.  Standard FD methods describe correctly low magnitude k

components, but yield a poor description of high k components of a function unless high

orders are used. The banded sinc-DVR, on the other hand, provides an even handed

description of all k that, for comparable order gives a much better description   of the high k
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components .  However, the low k components are treated less accurately  than with an FD

method of comparable order.  Here we outline an intermediate approach.

For convenience, we  introduce a scaled wave number and dispersion relation,

K =  kD  ,            F(K) =  D2 f(k) (12)

with continuous K range [0, p ] and, from Eq. (8), discrete values for finite N of

Kj = j p /[(N+1)],  j = 1,..,N  . (13)

The  problem of fitting the FD dispersion relation, Eq. (7), to the correct result, Eq. (9), is

viewed as the least squares fitting problem of  finding  d0, d1, .., dn that minimize

S(KM)   =  F(Kj) +K j
2( )2

j=1

M
Â      , (14)

where M £  N and, from Eq. (7),

F(K) = d0 + 2 ds cos(sK)
s=1

n
Â   . (15)

Because F(K) is linear in the ds, the problem is solved with standard general linear least

squares methods.3 0   We call an FD approximation that results from such a fit a dispersion

fitted finite difference (DFFD) approximation.   If M = N, then one fits the entire allowed

range of K values, and the resulting coefficients  will be similar to (but not exactly the same

as) the sinc DVR ones.  As one considers smaller M,  S(KM) decreases and the fit, although

to a more restricted K range, becomes better for that range.  In the limit of small M, i.e.
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restricting the fit to small K values, the result of such a fit is similar to the more standard FD

approximation.  

Because we fit to a discretized form of K, Eq. (13),  the specific numerical results

depend on N.  This is not an issue if the N value employed to generate the fits is larger than

any imagined application grid size.   The results we subsequently present, based on N =

1023, may be used in applications with much smaller grid sizes as we illustrate in Sec. III.

The maximum absolute error, e(KM),  between F(K) and -K2 in the K interval

defined by [K1, KM],  also decreases with  KM.  Fig. 2 illustrates this behavior with a 2n+1

= 9 DFFD approximation as a solid curve.   For comparison, we also show as a dashed

curve the maximum absolute error  in the same interval that results from the comparable

Langrangian FD method.  Clearly,  the DFFD errors are one or more magnitudes better

than the FD ones.

Each point on the solid curve of Fig. 2 represents a different set of DFFD

coefficients, determined by the fitting procedure above.  We define a variety of DFFD

approximations by the value of e(KM), denoting these approximations by DFFD2n+1(e).

Tables II-V  list DFFD2n+1(e) coefficients for e = 10-3, 10-4, 10-5 and 10-6, and 2n+1

ranging from 9 to 23. While this variety of possible methods may seem overwhelming, the

next section presents straightforward procedures for determining a suitable method.

D. Using the DFFD method: Computational and efficiency issues

A DFFD2n+1(e) method approximates the correct dispersion relation, -K2, for

scaled wave numbers, K, up to K = KM with an accuracy of e or better.  We illustrate this in

Fig. 3.   Provided that the finite DFFD matrix is edge corrected (Appendix A), its

eigenvalues are given by  the  Eq. (7).  Fig. 3a shows the absolute error in these eigenvalues

relative to -K2  as a function of K/p  for DFFD11(e) matrices with  e = 10-3, 10-5 and 10–7,

as well as for the Lagrangian FD11 matrix.    The FD11 errors are very small for low K, but



11

rise very rapidly and smoothly.  The DFFD errors are different, oscillating around an

accuracy one order of magnitude better than e , and then increasing near K ≈ KM.  For  K <

KM, the DFFD accuracy is much more uniform than the FD accuracy.  It is also clear that

the larger e, the larger KM.  Fig. 3b shows the error in the eigenvalues for DFFD2n+1 (e =

10-5 )  matrices  with 2n+1 = 7, 15 and 23, as well as for the Lagrangian FD23. case.  For K

< KM, the DFFD errors oscillate around 10-6, and we see that the larger 2n+1, the larger

KM.    Fig. 4 examines in more detail the variation of KM with 2n+1.   Fig. 4a shows the

KM values associated with the Lagrangian FD method and Fig. 4b shows the DFFD KM

values.    The DFFD KM values in Fig. 4b are generally 50% larger than the corresponding

FD values, which we show below leads to greater efficiency.

For a given problem, one estimates the maximum physical wave number, kmax,

related to the maximum possible kinetic energies that must be described on the grid, i.e.,

  h
2kmax

2 /(2m) , where m is an appropriate mass.  In order for each k ≤  kmax to correspond

to a K ≤ KM  one must choose grid spacings

D  ≤  KM/kmax   . (16)

The numerical effort associated with applying a FD or DFFD matrix is proportionate to

(2n+1)N.  Given Eq. (16) and  N ≈ (b-a)/D,  this suggests the effort is proportionate to

    W =
2n +1
KM

 ,            (17)



12

and ideally one should  choose a  method that leads to a relatively small value of W.   Fig.

4c  illustrates how W varies with 2n+1 for various e values.  An algorithm for choosing a

DFFD2n+1(e) method is:.

1. Decide on a desired accuracy, e.

2. From Fig. 4c, determine the optimal  (2n+1) to use for the chosen e .

3. From Fig. 4b , determine KM. Then D =  KM/kmax is the optimal grid spacing

and N = (b – a)/ D - 1 is the number of grid points.  (The  kinetic energy errors

will be   O[  e h2 /(2mD2)] or less, owing to the actual dispersion errors in Fig. 3

typically being an order of magnitude smaller than e.)

A larger D than the most optimal one above, and thus a smaller N, can also be used, but a

higher value of 2n+1 should be employed. The value of 2n+1 must be such that, for the

desired e, KM  = kmax D .    Fig. 4b can then be used to determine 2n+1  for given  e and

KM.   Because the effort in Fig. 4c is a slowly varying function of 2n+1 near each

minimum, there is actually a range of orders that can give nearly optimal performance and

so a larger D  or higher 2n+1 may not significantly impact the efficiency. For example,  Fig.

4c shows that for e = 10-4, the theoretical efforts for 2n+1 ranging from 5 to 13 are similar.  

However, Fig. 4b shows that KM and thus D can be twice as large for 2n+1 = 13 compared

to 2n+1 = 5 or 7.  

We now turn to how the numerical effort compares with other methods such as the

Fourier method.1,2  It is natural, as we do in Sec. III,  to compare results of  DFFD or FD

calculations with Fourier method results using the very same grids for all methods.

However, such comparisons can be misleading because a more efficient, fewer point Fourier

method calculation may suffice.  Similar cautions apply when comparing to other
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pseudospectral methods.   In the Fourier method,1,2 the correct dispersion relation holds for

all values of K between 0 and p and so one may use

Dps = p/kmax          and         Nps ≈  (KM /p) N (18)

in a Fourier method or comparable pseudospectral calculation.   Comparing with Eq. (16),

we see that Dps  =  (p/KM) D  >  D and Nps  <  N, since KM < p  for a DFFD or FD

method.

We assume the Fourier method is implemented with sine FFTs and use "FFT" to

denote it.  Let  N be the number of DFFD or FD grid points and Nps be the number of

Fourier or comparable pseudospectral grid points.   The  evaluation of the action of the

kinetic energy matrix on a vector scales as:

SDFFD = a N(2n+1)

SFFT    = 3
2

Nps log2
Nps

2
(19)

SDVR =  Nps2

where  the factors in SDFFD and SFFT have been chosen to be consistent with efficient

implementations of the relevant algorithms The factor a in the DFFD scaling represents an

improvement over simple (2n+1)N scaling made possible by a fast banded-matrix algorithm

(Appendix B) that utlizes the pipelining3 1  capabilities of most modern computers.   It is

somewhat machine dependent and turns out to be  a ≈ 0.65 on an IBM RS/6000 Power 3

workstation and a ≈  0.5 on a Compaq XP1000 ("Dec-Alpha") workstation. We use a =

0.65  in our estimates,  with the understanding that it may be greater or smaller on other
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platforms.   See Appendix C for a discussion of the FFT scaling.  SDVR above corresponds

to a DVR with a full second derivative matrix.

As an example, consider DFFD11(e=10-4), which has KM/p = 0.54 and the case N

= 237.  With a different but optimal pseudospectral grid spacing, Eq. (18) implies Nps=

128. We find from, Eq. (19),  SDFFD/SFFT = 1.46 , indicating that an optimized FFT

calculation could be nearly 50% more efficient than a corresponding DFFD one.  It is

possible to improve the DFFD efficiency at the cost of accuracy,  by increasing e or

reducing 2n+1.  Similarly, a DFFD calculation becomes even less efficient relative to an

optimized FFT one if smaller e or higher 2n+1 values are considered.  If the same grid

spacing were used for both DFFD and FFT,  i.e., if N = Nps = 128,  the SDFFD/SFFT ratio

for 2n+1 = 11 would be  ≈ 0.8, indicating a more efficient DFFD calculation.   The

corresponding SDFFD/SDVR ratio for our example is 0.10. We conclude that in terms of

efficiency, the DFFD method is superior to a full matrix DVR method and can approach or

surpass the Fourier method.  This is particularly true because, in practice, pseudospectral

methods are often implemented using smaller grid spacings than the Dps determined from

Eq. (18).

Actual timing comparisons between methods depend on their implementation, and

the estimates above are based on the assumption of efficient implementations. With the

ESSL32 subroutine library on the IBM RS/6000 to evaluate FFTs, and our fast banded

matrix algorithm (Appendix B) for the DFFD computation,  we achieve timings that are

roughly consistent with the theoretical estimates above.  (Of course completely different

results might occur if any method is implemented in a less efficient manner.)

E.   DFFD and parallel computations

A primary  motivation for exploring FD methods is related to their usefulness in

parallel computing.16  In order to study large systems with large memory requirements, it is
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advantageous to harness the power of many processors either in distributed memory or

shared memory parallel systems. In parallel algorithms for iterative bound state or wave

packet calculations, a vector  y corresponding to the grid representation of the function is

distributed over various processors according to one or more variable,17,18 and the

calculation is advanced  via repeated actions of the Hamiltonian matrix,  H, on y. Most of the

calculation occurs concurrently on the various processors.    The calculation of the action of

the kinetic energy matrix contribution to Hy,  Ty, for the distributed variable(s), requires

communication. This communication is generally the major bottleneck that prevents efficient

scaling of parallel algorithms.

 Because pseudospectral methods are nonlocal in each specific variable, the amount

of communication required can become considerable. Let Nproc be the number of

processors.   A simple parallel model,  based on a global approximation involving each

processor to communicate with every other processor, requires that (Nproc-1)/ Nproc of the

total wave packet be communicated for each calculation of Ty.1 7 Because of its local nature,

the DFFD promises to drastically reduce the amount of communication. With judicious

choice of parameters, each processor needs to communicate only with its nearest neighbors,

and only a fraction of the wave packet on any given processor needs to be distributed to

complete each calculation of Ty.  The exact amount of communication will depend on the

specific parameters of the problem.

 To illustrate the communication requirements for an FD/DFFD method, consider  a

two coordinate degree of freedom  example,  with wavefunction or wave packet components

y(Ri,rj), i = 1,.., NR  and j = 1,2,.., Nr.   Suppose the  wave packet is distributed over two

processors according to the variable R and let NR = 256.  Therefore,  Processor 0 contains

the chunk of the wave packet  on R1….R128 and all r, and Processor 1 contains the chunk

corresponding to R129….R256 and all r. Suppose also that the action of the kinetic energy

matrix  is accomplished via a 7 point FD or DFFD (i.e., n = 3).  The kinetic energy  matrix

factors into two terms, TR and Tr.  In this example, the evaluation of the action of Tr
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requires no communication,  and  the computation of   TRy  requires communication of

information only at the edges.  For example,  the component  of TR y at R128, evaluated on

processor 0, requires Processor 1 to pass to it y(R129,r), y(R130,r) and y(R131,r) (for all r).

Therefore, only minimal information needs to be exchanged between the processors.

In FD or DFFD methods the fraction of the wave packet that must be communicated

to each processor to complete an evalulation of Ty depends only on the number of grid

points in the distributed variable, e.g. NR, and the FD/DFFD order, n, and is independent of

the number of processors, Nproc.   Each processor must receive 2n/N of the wave packet

except Processor 0 and Processor (Nproc -1) that  contain the grid edges; these must receive

n/N.  Suppose that NR = 256. If 2n+1 = 9, then 2n/N =1/32.  When (2n+1) = 17, 2n/N =

1/16. Contrast this with the communication requirements of the simple algorithm given in

Ref. [17], where for Nproc = 8, 7/8 of the wavepacket must be communicated to each

processor. A recent DVR-based  parallel algorithm proposed by  Meijer1 8 reduces the

fraction to 2(Nproc -1)/ Nproc
2, an enormous improvement for over the method of Ref. [17].

The DFFD methods will usually require less communication than this  algorithm, which, for

the above example, would require 0.22 of the wave packet be communicated.  More efficient

implementations of the DFFD method will result from distributing the data according to two

or more variables thus taking advantage of larger numbers of processors.

F.   Wave packet scattering and FD approximations

In wave packet calculations that aim to obtain energy resolved probabilities, a time

sequence is generated and Fourier analyzed.9  This analysis includes multiplication by by a

factor consistent with transforming between  wave number (k) and collision energy (E)

normalized time-independent scattering states.  The wave number to collision energy

dispersion relation, for one degree of freedom with associated mass m,  is
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E(k) =  
  
-

h2

2m
f(k) , (20)

where f(k), in the case of an FD approximation is given by Eq. (7).  Superior energy

resolved information can be inferred if Eq. (20) is consistently employed in the analysis.

This is a subtle point since one is tempted to employ instead the exact dispersion relation,

Eex(k) =   h2k2 /(2m) .   In the limit of sufficiently small grid spacing, D, or high enough FD

order, there is no appreciable error in this latter approach.  In practice, there are differences

between Eex(k) and E(k),  particularly in the higher magnitude k limit, and we find that the

actual error in a reaction probability can be reduced considerably by treating the analysis

consistently.

More specifically, we outline how the analysis procedure of Ref. [33] is easily

modified to treat the FD dispersion relation. Consider a position space normalized initial

wave packet y(x, t=0) = z(x), where x is the incoming scattering coordinate and z(x) is

localized in the asymptotic, incoming channel. Time-independent scattering wavefunctions,

yE+, normalized such that yE
+ y E'

+  =   2ph d(E-E'),  are proportionate to a Fourier

transform of the time evolving wave packet under the Hamiltonian H,  y(t) = exp(-iHt/  h )

y(t=0),  according to 33,34

  

yE
+ =

1
ay (E)

dtÚ exp(iEt / h) y(t) , (21)

with

  
ay (E) = -

h

dE / dk
Ê 

Ë 
Á 

ˆ 

¯ 
˜ 
1/ 2

dk exp(ikR)Ú z(R) . (22)
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The energy resolved reaction probability is P(E) = yE
+ F yE

+ , where F is an appropriate

flux operator,33,34 and it thus involves a factor of  1/ ay
2 (E)  (Eq. (13) of Ref. [33]).  A

consistent treatment  involves using Eqs. (7) and (20) to evaluate dE/dk in ay (E)  instead of

assuming that dE/dk can be replaced by   h2k / m .  (Similar considerations apply to  state-to-

state reaction probabilities.)  

III. ILLUSTRATIONS

A.   Harmonic oscillator bound states
As a simple but instructive example, we determine the eigenvalues of a discrete

approximation to the unit mass and frequency harmonic oscillator Hamiltonian, in atomic

units (  h =1),  

Hij =  (1/2) ( - D''ij + dijxi2)   , (23)

where the grid Eq. (1) and various FD approximations for D'' are used.  Note that all the FD

calculations here and in Sec. IIIB are performed with the edge corrected FD matrices of

Appendix A.   We set a = -10 ao, b = 10 ao in all our calculations, and focus on the root

mean square (RMS) error of the first twenty eigenvalues of Eq. (23) relative to the exact

ones. Two sets of calculations are discussed , with N = 127 and N = 63.  The latter set has a

grid spacing that is twice as large as the former.

Figs. 5a (N = 127) and 5b (N = 63) display the RMS error obtained from a variety

of calculations with the Lagrangian FD2n+1 (dashed curve, open circles) and various
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DFFD2n+1(e) (solid curves, see figure for symbols) methods.  See Tables I-V for the FD

and DFFD coefficients used in the calculations.   From Fig 5a, we see that the RMS error

of the Lagrangian FD approximation scales exponentially with 2n+1, as indicated by the

linear dashed curve in the linear-log plot of Fig. 5a.   The RMS error associated with the

various DFFD approximations, for fixed e, displays near exponential scaling for low values

of 2n+1 but then plateaus out at a value near the e value associated with a particular method

as one would expect.

It is more significant that the RMS error of any DFFD method, before it plateaus

out, is always less than the Lagrangian FD error.  For example, the DFFD11(e = 10-7 )

method yields an RMS error that is almost three orders of magnitude smaller than the FD

result at 2n+1 = 11.  In fact, Fig. 5a shows that a Lagrangian FD with 2n+1 = 19 is

required to obtain a similar RMS error to the DFFD11(e = 10-7 ) case.  

Prior to the plateau region in Fig. 5a,  a larger e DFFD method may be superior to a

smaller e DFFD method.  For example, at 2n+1 = 9 we see that the e = 10-6 DFFD yields

the best RMS error, whereas the e = 10-8 DFFD yields the largest error. We can understand

this by referring back to Fig. 4b.  Here we see for fixed 2n+1,  KM decreases as e is

decreased,  which means that DFFD2n+1 fits accurately a smaller and smaller range of wave

number values.  We also see that with e fixed  a value consistent with obtaining observables

to 5 or 6 significant figures, a low order DFFD may suffice and yield better results than the

corresponding Lagrangian FD or, indeed, a DFFD with a much smaller e.  

The other point to notice in Fig. 5a is that the plateau region is reached at nearly the

same values of 2n+1 that one would expect from the curves presented in 4c. For example,

the e = 10-6 
 curve plateaus at 2n+1 = 11, which is the optimal value as indicated by Fig. 4c.

Therefore the grid spacing used in this calculation is optimal. If the grid spacing is doubled,

the results are very different, as shown in Fig. 5b.  Since the largest good wave number, kmax,
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is given by KM /D, increasing D reduces kmax for a given KM. In Fig. 5b, only e= 10-5 has

reached its plateau, and not until 2n+1 = 19. Lower e  values require much higher orders to

attain their accuracy limits.  While increasing order rather than decreasing grid spacing is

one way to improve an FD calculation10,11 beyond a certain point,  it leads to reduced overall

efficiency.  Also note, in Fig 5b that the DFFD curves lies below the FD curve for all 2n+1.

B.  Total reaction probabilities for three-dimensional reactive scattering
We now consider the D + H2(v = j = 0) Æ DH + H reaction in three dimensions

(total angular momentum J = 0), with the Liu-Siegbahn-Truhlar-Horowitz (LSTH) potential

energy surface.35-37  The real wave packet approach3 8 was used to carry out wave packet

propagation in reactant Jacobi coordinates, R = D - center of H2 distance; r = H2

internuclear distance; cosg = cosine of the angle between vectors associated with R and r.

Grids,  as in Eq. (1), were used to represent both R and r  (Rmin=0 ao, Rmax=12.5 ao;

rmin=0.5 ao, rmax=12.5ao). The angular part of the wave packet was represented in a

rotational basis set of the first 25 even Legendre functions, but evaluation of the action of

the potential involved transformation to an equivalent grid representation.38.39 The

propagation involves repeated actions of a matrix representation of the Hamiltonian on a

vector, with the kinetic energy terms in R and r each being evaluated with the various FD

approximations.  A flux method 3 3 was used to evaluate the reaction probability. The initial

(Gaussian) wave packet and other details are as in Ref. [38].   The flux calculation involves

a first derivative with respect to r at one particular r value.  In all cases this was evaluated

accurately with FFTs, although we could have used a high order FD approach.

In order to establish the most accurate result with which the various approximations

could be compared, we carried out a calculation using the Fourier method in its sine FFT

form employing  NR = Nr =127 points in the action of the kinetic energy operator , i.e., DR

= 0.09766 ao and Dr = 0.09375 ao.   All the scattering calculations were performed on a
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Compaq XP1000 computer and the Digital DXML4 0 library was used for the FFTs.  The

sine FFTs we employed are such that NR+1 and Nr+1 should be even,  and preferably a

product of low prime numbers.  Fig. 6 displays the total reaction probability over the 0 - 1.3

eV collision energy our chosen initial wave packet  was capable of describing.   

One measure of error is the maximum absolute magnitude deviation of the reaction

probability from the most accurate result over the energy range.  This error is often  the

error at  some energy near the upper collision energy limit in Fig. 6.  Fig. 7a displays the

error obtained from several calculations employing NR = Nr = 95 points (i.e., DR = 0.130

ao and Dr = 0.125 ao).   Each symbol in the figure is the result of a full three-dimensional

wave packet calculation and analysis over the 0 - 1.3 eV collision energy range.  The DFFD

calculations, for each  e,  are performed at a low, an optimal (intermediate) and a high value

of 2n+1. The optimal value was chosen by computing KM = kmax D and then using Fig 4b.

With one exception, the DFFD results are superior to the FD results at all 2n+1. It is also

clear that above the optimal value of 2n+1, there is nothing to be gained by going to higher

order.  The dashed curve in this plot is the error of applying the Fourier method with  NR =

Nr = 95.   The e = 10-6 
 curve reaches the Fourier limit at its optimal value.

The  flux analysis method used to infer the results in Fig. 7a used the formulae from

Ref. 31, and did not take explicit account of the FD dispersion relation.   While the errors in

Fig. 7a are reasonable and behave qualitatively as expected, the error magnitudes can be

reduced if the simple correction to the analysis procedure, given in Sec. IIF, is used as is

shown in  Fig. 7b.  This simple correction provides major improvements to the less accurate

calculations, particularly the Lagrangian FD calculation.  It also dramatically improves the e

= 10-4 
  results. Once the DFFD results approach the Fourier limit, the FD dispersion

relation correction (Sec. IIF) has little effect.

Fig. 7c presents analogous results to Fig. 7b  but employing NR = Nr = 79 points,

i.e.,  larger grid spacings of DR = 0.156 ao and Dr = 0.150 ao, where in fact the
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corresponding  Fourier method result (dashed line) has  error > 10-3. What is striking in this

case is that it is fairly easy here to reach the Fourier limit with low accuracy DFFD and low

order calculations.  A high order Lagrangian FD method also gives “good” results. This

should serve as one cautionary note when comparing FD and spectral methods. If the grid

spacing is so large that the FFT results themselves are not well converged, then low

accuracy DFFD results may reach the Fourier limit.

Finally,  regarding CPU timings, based on extensive calculations with NR = Nr = 63,

79,  95 and 127 we find that the DFFD/FD CPU times for the kinetic energy portion of the

calculation  vary linearly with 2n+1 as would be expected.  Generally the  2n+1 = 9 results

are always about twice as fast as the corresponding (same number of points) Fourier

calculations based on an efficient FFT library,4 0  and the 2n+1 = 19 results are comparable

in time to the Fourier calculations.   (These results are somewhat better than suggested by

the simple scaling estimates of Eq. (19), which imply 2n+1 ≈ 13 or 15, not 19, for the cross

over point.)

IV. Concluding Remarks

We presented a new FD method,  the DFFD method,  for calculating a grid of

second derivative approximations corresponding to a grid of function values.  The general

approach, based on fitting the dispersion relation of the relevant finite difference derivative

matrix to the correct result up to a limiting accuracy , is applicable to other derivative orders.

(See, for example, earlier work on first derivative approximations in Refs. [25] and [26].)

Therefore more general forms of the kinetic energy operator could also be treated with the

approach. We also presented a highly efficient algorithm for implementing the method that

effectively utilizes the pipelining capabilities of modern computers.  For a given problem,

and a desired degree of accuracy, it is straightforward to choose the optimal grid spacing,

and order.
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We also carried out comparisons of our approach with the standard Lagrangian FD

and Fourier methods in relation both to a simple eigenvalue problem and a more challenging

three-dimensional reactive scattering problem.  Depending on the desired accuracy, the

DFFD approach, for comparable effort, can be orders of magnitude better than FD and can

also approach the Fourier method.  We therefore believe that the DFFD approach will be

highly competitive with commonly used pseudospectral methods for applications that do not

require extremely high accuracy, which comprise the majority of dynamics calculations. In

addition to accuracy, simplicity and portability, the locality of the approximation makes it

well suited to parallel computation.
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APPENDIX  A:  THE FD DISPERSION RELATION AND EDGE

CORRECTIONS

The basic FD or DFFD second derivative matrix,  D'',  is given by Eq. (4) or (5).  

With the exception of the first n and last n rows, each row involves a centered 2n+1 point

approximation. If one neglects the upper and lower edge effects, i.e. imagines that there is

always a 2n+1 point centered difference approximation for the second derivative at any grid

point, then a simple expression for the eigenvalues of D'' arises.  For example, one can

imagine that  the grid is sufficiently (infinitely) extended in both the left and right directions.
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It is then easy to show by direct substitution that the sine (or particle in a box) basis vectors,

v(j), with grid (xi) components

v (j)
i = v (j) (xi ) =

2
L

sin jpxi
L

Ê 
Ë 
Á 

ˆ 
¯ 
˜ =

2
(N +1)D

sin ji p

N +1
Ê 
Ë 
Á 

ˆ 
¯ 
˜ , (A1)

for j = 1,2,…, N,  are eigenstates  of each  Ds matrix according to

Ds v(j)   =    2 ds cos sjp
N +1

Ê 
Ë 
Á 

ˆ 
¯ 
˜  v(j)   . . (A2)

(The sine vectors v(j) are in fact eigenvectors of D0 and D1 for any grid extent.) Therefore,

neglecting edge effects,  the sine vectors are also eigenvectors of the full D'' matrix, Eq. (5),

and the eigenvalues of Eq. (5) become simply  Eq. (7), the desired dispersion relation, when

Eq. (8) is used.   (See also Ref.  [12] for a related derivation of Eq. (7) with  complex

exponential basis functions.)

Certain modified D'' matrices, of any finite grid extent or dimension N, can also lead

to the analytical dispersion relation, Eq. (7).   The modified matrices result when one

imposes certain boundary conditions to effectively extend the grid and involve altering the

upper n-1 and lower n-1 rows of the D'' matrix. The idea is to imagine that the grid of

available function values, y1,  y2,  y3,  …, yN ,  is extended "off" the grid in both directions:

…,  y-2  , y-2  , y-1  , y0,  y1,  y2,  y3,  …, yN , yN+1, yN+2, yN+3,  …

Sine wave boundary conditions, as in the Fourier method applied with a sine Fourier

transform,1 5  are such y0 = 0,  yN+1 = 0, y-k = - yk, and yN+1+k = -yN+1-k for k > 0.  This

allows one to always employ 2n+1 points (some obtained by reflection of the available



25

points) in evaluating the action of the FD second derivative matrix.  Of course this is just

one particular way of extending the grid of function values,  but in practice we have found

that it can be a significant improvement over assuming that the function values off the grid

are all zero, which is implicitly what is assumed if no modification is made.  Consider, for

example, evaluation of  the first component second derivative of an n = 3 DFFD or FD

matrix.   Without grid extension, one would have, from Eqs. (3) and (4),  y''1 = [d0 y1  +  d1

y2  +  d2y3 +  d3 y4] /D2.  The above grid extension idea implies  

y''1  =   [ d3 y-2  +  d2 y-1 + d1 y0  +  d0 y1  +  d1 y2  +  d2 y3] /D2

       =    [(d0 -d2) y1  + (d1 -d3) y2  +  d2 y3  + d3 y4] /D2 .

Thus,  D''11 Æ  (d0 - d2)/D2 and D''12 Æ (d1 -d3)/D2  in this case.   Some reflection shows

that for an N x N FD or DFFD  matrix, D'', the first and last n-1 rows are modified

according to:

For i = 1, 2, …, n-1 :

For j = 1, 2, …,  n-i :

D'' i,j = (d |i-j|  -  d i+j) /D2 (A3)

D'' N-i+1, N-j+1 = D'' i,j

where the last statement corrects the lower right edge of the FD matrix.  For i = n, n+1, …,

N-n, the usual FD matrix, D''i,j = d |i-j| /D2  for |i-j| £  n and 0 otherwise applies.  

By direct substitution, it is possible to show that for any finite N, the  edge corrected

D'' matrix defined by Eq. (A3) has eigenvectors given by the sine basis vectors, v(j),  Eq.
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(A2),  and  eigenvalues given by Eq. (7) with the wave number, k, being discretized

according to Eq. (8).  

It is possible to obtain a similar result if, instead of sine boundary conditions,

periodic boundary conditions are employed.  In this case the grid would have to be defined

slightly differently to include one of the end points, e.g. one could employ D = (b-a)/N in

Eq. (2), which implies yN = b.    One then assumes "wrap around" boundary conditions, y0

= yN, y-1 = yN-1, …, and yN+1 = y1, yN+2 = y2, …  Considerations similar to those above

lead to a different modified D'' matrix  that does not actually have any of the old non-zero

matrix elements modified.  Instead, some previously zero elements in the upper right and

lower left portions of D'' become non-zero. The eigenvalues of this matrix are also given by

Eq. (7).  The  allowed values of the wave number k can now be both positive and negative

according to kj = -p/D + j 2p/(ND).  (Kouri and co-workers have applied similar wrap

around boundary conditions within the context of DAF approximations, allowing the

construction of "fast" DAFs,4 1 which are useful for large bandwidths.)

APPENDIX B: METHODS  FOR COMPUTING THE ACTION OF A

FD MATRIX ON A VECTOR

We investigated several approaches for evaluating the action of the FD or DFFD

second derivative matrix D'', proportionate to the kinetic energy matrix, on a vector y. A

direct evaluation of the form

y' ' i = D'' ij yj
max(1,i-n)

min(N,i+n)
Â (B1)

makes use of the banded structure and involves about  N(2n+1) multiplications.

Approximately the same number of additions are also involved.  When programmed directly



27

as written, these additions are essentially "free" in terms of computational time when run on

current computers owing to compilers arranging certain additions and multiplications to be

carried out in the same clock cycle ("pipelining").3 1   It is also possible to significantly

improve on this computational effort.  For example, one could employ  Basic Linear

Algebra Subroutines (BLAS).4 2 BLAS routines are available on almost every computer

system, are highly portable and are tailored by computer manufacturers to run extremely

efficiently on their computer platforms.   The level 2 BLAS routine DSBMV evaluates the

matrix-vector product for a symmetric band matrix and can lead to substantial efficiencies

over programming Eq. (B1) in the most obvious manner.  

However, we have found an even more efficient algorithm based on the

decomposition of D'' in terms of the n+1 Ds matrices, Eq. (5).    If y'' = D'' y is the desired

result and if edge corrections are ignored, then  the algorithm is, with  Ds = ds/D2  :

y''  =  D0 y

For s = 1, n :

For i = 1, s :

y''i = y''i + Ds ys+i

(B2)

For i = s+1, N-s :

y''i = y''i +  Ds  (yi-s + yi+s)

For i = N-s+1, N :

y''i = y''i + Ds   yi-s

which involves first copying d0 times the initial vector y  into y'' and then, for s = 1, 2,…, n,

updating the components of y''.  The key to efficiency is the update of the central

components of y''  from i = s + 1 to N-s for each s.   What was two multiplications in Eq.
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(B1) has been effectively turned into one multiplication (and an addition). For N >> n, then

the number of multiplications is approximately (2n+1)N/2, i.e. a factor of two less than the

obvious algorithm, Eq. (B1).  There are more additions  in algorithm (B2).  However,  we

find that the effort associated with these extra additions tends to be significantly masked,

owing again to pipelining.   This is the source of  the a term in Eq. (19).  It is also

straightforward to edge correct (Appendix A) the result of Eq. (B2).  After applying Eq.

(B2), one then modifies the first and last n-1 components of y'' according to:

For i = 1, n-1 :

   For j = 1,..,n-i :

y''i = y''i  -  Di+j yj (B3)

y''N+1-i = y''N+1-i  -  Di+j yN+1-j

which accomplishes the same thing as the redefinition of the D'' matrix in Eq. (A3).

APPENDIX C:  OPERATION COUNT FOR THE FOURIER

METHOD

The Fast Fourier Transform (FFT) involves numerical work that scales as O(N

log2N), where N is the number of grid points.3 0  The actual numerical effort,  generally

dominated by the number of real multiplications, is more subtle and depends on the specific

FFT implementation. (As in Appendix B, we assume that the additions, generally occurring

simultaneously with the multiplications, can be pipelined on modern computers.)   One also

sees a variety of sub-optimal estimates of this count in the literature.  An FFT program

adopted from a book or taken from a publicly available software library might involve a

multiplication count that is two or more times larger than what is achievable with an efficient
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and probably computer dependent program.  In determining the relative efficiency of the

various FD methods with respect to an FFT based Fourier method, we assumed in the text a

reasonably optimal implementation of the FFT.  This Appendix justifies the multiplication

count assumed for such a Fourier method.

With N taken to be a power of two, the number of complex multiplications

associated with a single complex to complex FFT is approximately4 3 (N/2) log2N.  (Most

modern FFT libraries allow for N, or sometimes N+1 in the case of sine FFTs, to be simply

even and, for optimal efficiency, a product of low prime numbers.)  Normally a complex

multiplication involves four real multipliciations.  However, symmetries in the details of the

FFT allow one to effectively use three and not four real multiplications per complex

multiplication,40 so that the number of real multiplications per complex FFT is closer to

(3N/2) log2N.  There are more sophisticated formulae for the number of real

multiplications4 0 that involve still fewer operations.  However, for the N of interest, generally

less than 1024, we have found with two modern, optimized libraries (the IBM ESSL3 2 and

the Digital DXML4 0 libraries) that this latter result is quite reasonable.  Thus, for the most

common form of the Fourier method, which involves two complex FFTs per evaluation of

the kinetic energy matrix on a complex vector,  the numerical effort is approximately that of

3N log2 N real multiplications.

We are most interested in an implementation of the Fourier method with a real to

real sine FFT.   Such a sine FFT is effectively dominated 3 0  by an N/2 point complex FFT

and so the number of real multiplications per single sine FFT is about (3N/4) log2(N/2).

Since two sine FFTs are required per evaluation of the kinetic energy matrix acting on a real

vector, the number of real multiplications is then about  (3N/2) log2(N/2).  
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TABLES

Table I.  Lagrangian FD second derivative matrix coefficients.  Numbers in brackets indicate
  powers of 10.

2n+1 ds, s = 0,1,..,n

9    -2.84722222222             1.60000000000             -0.200000000000
   0.253968253968(-01)    -0.178571428571(-02)

11    -2.92722222222              1.66666666667              -0.238095238095
     0.396825396825(-01)    -0.496031746032(-02)    0.317460317460(-03)

13                     -2.98277777778               1.71428571429             -0.267857142857
                          0.529100529101(-01)    -0.892857142857(-02)    0.103896103896(-02)
             -0.601250601251(-04)

 15             -3.02359410431               1.75000000000              -0.291666666667
                         0.648148148148(-01)    -0.132575757576(-01)     0.212121212121(-02)
                        -0.226625226625(-03)     0.118928690357(-04)

 17   -3.05484410431              1.77777777778             -0.311111111111
    0.754208754209(-01)    -0.176767676768(-01)    0.348096348096(-02)
              -0.518000518001(-03)    0.507429078858(-04)   -0.242812742813(-05)

 19   -3.07953546233              1.80000000000             -0.327272727273
    0.848484848485(-01)   -0.220279720280(-01)    0.503496503497(-02)
   -0.932400932401(-03)    0.128442985586(-03)   -0.115693130399(-04)
     0.507843645099(-06)

 21             -3.09953546233              1.81818181818            -0.340909090909
    0.932400932401(-01)   -0.262237762238(-01)   0.671328671329(-02)
   -0.145687645688(-02)    0.251848991345(-03)  -0.321369806664(-04)
               0.267286128999(-05)   -0.108250882245(-06)

  23                  -3.11606438795             1.83333333333              -0.352564102564
                         0.100732600733           -0.302197802198(-01)    0.846153846154(-02)
              -0.207390648567(-02)    0.423246221566(-03)   -0.682206080813(-04)
                         0.808540540223(-05)   -0.623731273886(-06)     0.234309268928(-07)
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Table II. DFFD(e = 10-3)  second derivative matrix coefficients.  Numbers in brackets indicate
  powers of 10.

2n+1 KM/p           ds, s = 0,1,..,n

9 0.57 -3.00752631036              1.73409774424            -0.277114173738
 0.538284928126(-01)   -0.715783320850(-02)

11 0.65 -3.09317424432              1.81136085918           -0.333328232367
 0.857932166572(-01)   -0.203312767492(-01)   0.318623559756(-02)

13 0.70 -3.14695299609              1.86135425441           -0.373309186173
 0.112881460866           -0.353836812411(-01)   0.958462639122(-02)
-0.173392583786(-02)

15 0.74 -3.18176011496              1.89434052267          -0.401313224347
 0.134006102161          -0.493134756581(-01)   0.173732544630(-01)
-0.520324386831(-02)   0.106208422138(-02)

 17 0.78 -3.20606683388              1.91766953469            -0.421909051551
 0.150651100423           -0.615172937772(-01)   0.253630788949(-01)
-0.974588783394(-02)    0.318373204492(-02)  -0.727196929671(-03)

19 0.80  -3.22299218142              1.93406079669            -0.436782406626
  0.163260241868           -0.714498945268(-01)   0.325692020721(-01)
 -0.144905270182(-01)    0.594898976062(-02)  -0.208584225828(-02)
  0.523654248651(-03)

21  0.82 -3.23565073477              1.94639721132            -0.448194652988
 0.173261981400           -0.797264050498(-01)   0.389999511305(-01)
-0.191429182665(-01)    0.904046937689(-02)  -0.393083408260(-02)
 0.147065710509(-02)   -0.403718655899(-03)

23 0.84 -3.24511651122              1.95566660040            -0.456894675479
    0.181079205310          -0.864348321532(-01)   0.444794495684(-01)
              -0.233799356983(-01)   0.121181195372(-01)  -0.600477882385(-02)
    0.274168249782(-02)  -0.108567549576(-02)   0.322646265844(-03)
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Table III. DFFD(e = 10-4)  second derivative matrix coefficients.  Numbers in brackets indicate
  powers of 10.

2n+1 KM/p                   ds, s = 0,1,..,n

9 0.46     -2.95463089055              1.68853913589            -0.248562076568
        0.417428777709(-01)   -0.441628133062(-02)

11 0.54    -3.04815744881              1.77082852536            -0.304011079096
        0.692965489992(-01)  -0.136466734520(-01)    0.162170037812(-02)

13 0.61     -3.10927537741              1.82646558524            -0.345740310257
     0.945879391564(-01)    -0.255340850297(-01)   0.558957488054(-02)
   -0.740070089962(-03)

15 0.66    -3.15085169959              1.86518705522            -0.376916188202
      0.116052549350            -0.379010120945(-01)   0.113143689741(-01)
    -0.269839370338(-02)     0.395506541984(-03)

17 0.70     -3.18023073755              1.89298475711            -0.400414666665
        0.133684283047           -0.494986655648(-01)   0.178581512346(-01)

    -0.574480088363(-02)    0.147746811877(-02)  -0.238422885519(-03)

19 0.73   -3.20176404869              1.91359155930            -0.418450724893
    0.148062930615           -0.598600651418(-01)   0.245221555108(-01)
   -0.949077758166(-02)    0.325180256103(-02)  -0.896881440188(-03)

   0.158804903573(-03)

21 0.76     -3.21751621028              1.92879277734            -0.432100334454
        0.159436234545           -0.686107768660(-01)   0.306902900963(-01)
       -0.134249789800(-01)    0.547787183108(-02)  -0.197690696198(-02)
        0.578959401646(-03)   -0.111188043051(-03)

23 0.78     -3.22963300053              1.94055852097            -0.442866285531
         0.168702094698           -0.760868634860(-01)   0.363158574157(-01)
      -0.173419936914(-01)    0.797189229880(-02)  -0.340211389200(-02)
       0.128712230192(-02)   -0.398753371880(-03)   0.827475903337(-04)
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Table IV.  DFFD(e = 10-5)  second derivative matrix coefficients.  Numbers in brackets indicate
    powers of 10.

2n+1 KM/p                         ds, s = 0,1,..,n

9 0.37     -2.91759389235              1.65741376974            -0.230484490985
         0.350634616485(-01)   -0.319702023083(-02)

11 0.46     -3.01370652873              1.74046022973            -0.283431293138
         0.589695114516(-01)   -0.101371712423(-01)   0.993085049736(-03)

13 0.53     -3.07881836216              1.79876288173            -0.325015107320
        0.820816159831(-01)   -0.196945035156(-01)   0.365934989885(-02)
      -0.386029108501(-03)

15 0.58     -3.12461689293              1.84080635663            -0.357414797410
      0.102775755548           -0.303765129408(-01)   0.791002084598(-02)
      -0.157051246937(-02)    0.179013024771(-03)

17 0.63     -3.15781834378              1.87183556340            -0.382681365371
        0.120561652244           -0.410391882516(-01)   0.132142505869(-01)

    -0.366079318978(-02)    0.773693759881(-03)  -0.954475109185(-04)

19 0.66     -3.18244388407              1.89515466702            -0.402450768489
       0.135490686594           -0.509874619869(-01)   0.189736207522(-01)
     -0.648410950406(-02)    0.189432759599(-02)  -0.424959280580(-03)
       0.566900898173(-04)

21 0.70     -3.20092520468              1.91282871361            -0.417891713058
     0.147772740797           -0.598273241656(-01)   0.246738254974(-01)

     -0.972653138106(-02)    0.348133007385(-02)  -0.106531944706(-02)
      0.252413676250(-03)   -0.362222030285(-04)

23 0.72     -3.21518337405              1.92656623086            -0.430169270519
      0.157927077948           -0.675664604252(-01)   0.300734143346(-01)
      -0.131409791880(-01)    0.540883900417(-02)  -0.201375021728(-02)
      0.642919547766(-03)   -0.160366587811(-03)   0.246678536943(-04)
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Table V.  DFFD(e = 10-6)  second derivative matrix coefficients.  Numbers in brackets indicate
    powers of 10.

2n+1 KM/p                      ds, s = 0,1,..,n

9 0.30     -2.89304092672              1.63712687766            -0.219299316595
        0.312901200130(-01)   -0.259734807694(-02)

11 0.38     -2.98831371176              1.71843373456            -0.269220835679
       0.524220917154(-01)   -0.817942221261(-02)   0.701403490614(-03)

13 0.45     -3.05488720754              1.77730652621            -0.309651152665
       0.734848372139(-01)   -0.161047793856(-01)   0.264469260617(-02)
    -0.236624386935(-03)

15 0.51     -3.10281332019              1.82079637407            -0.342008377870
       0.929503728074(-01)   -0.253160104212(-01)   0.590251288462(-02)
    -0.101357502373(-02)     0.954570337130(-04)

17 0.56     -3.13843684694              1.85374329229            -0.368001153554
        0.110289646360           -0.349341866959(-01)   0.102124928230(-01)

    -0.249588415711(-02)    0.448999032235(-03)  -0.448692315917(-04)

19 0.60    -3.16533895294              1.87898399911            -0.388810109332
       0.125276752875           -0.442635004806(-01)   0.151436283853(-01)
    -0.464558721629(-02)    0.118398335173(-02)  -0.223373361303(-03)
     0.237641441984(-04)

21 0.64    -3.18590882326              1.89849622445            -0.405443625771
      0.137969267339           -0.528710978038(-01)   0.202721728793(-01)

   -0.728249556210(-02)    0.232093751449(-02)  -0.614797570847(-03)
    0.121501716503(-03)   -0.137504414901(-04)

23 0.67     -3.20204582907              1.91393371099            -0.418947212154
         0.148739722477           -0.606652897814(-01)   0.253500050681(-01)
      -0.102259922299(-01)    0.381242063987(-02)  -0.125720700084(-02)
       0.345796563483(-03)   -0.715909901745(-04)   0.862124142694(-05)
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Figure Captions

Figure 1.  The dispersion relation for the 2n+1 = 9 point Lagrangian FD approximation

(dashed curve) is compared to the exact result (solid curve).

Figure 2.   The maximum absolute magnitude error between the scaled dispersion relation,

F(K), and the exact result (-K2),  over K values in [K1,KM].  [N = 1023 was used in the

discretization of K, Eq. (13).]   The DFFD  (solid curve) and Lagrangian FD (dashed curve)

results for the 2n+1 = 9 point case are shown.  

Figure 3.  (a) The absolute magnitude error in the eigenvalues of a  95 x 95 DFFD1 1(e)

matrix as compared to the exact result (-K2),  as a function of  K, for  e = 10-3, 10-5, 10-7; (b)

the error in the eigenvalues of a  95 x 95 DFFD2n+1(e=10-5) matrices with 2n+1 = 7, 15, and

23.

Figure 4. (a)  KM vs 2n+1  for Lagrangian FD consistent with a maximum absolute error in

the scaled dispersion relation given by e; (b) KM vs 2n+1  for DFFD2n+1(e); (c) The work

parameter, W = (2n+1)/KM, as a function of  2n+1 for DFFD2n+1(e).

Figure 5.  The RMS error for the first 20 eigenvalues of the unit mass and frequency

harmonic oscillator problem.   Each symbol on the figure represents the RMS error result

of a calculation with the FD (open circles) or various DFFD (see figure)  approximations.
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Figure 6.  The total reaction probability for D + H2(v = j = 0)  Æ DH + H reaction in three

dimensions (total angular momentum J = 0), based on the LSTH surface.  See text for

further details.

Figure 7.  Maximum absolute error in the reaction probability for the D + H2 reaction as a

function of order for FD (open circles), and several DFFD methods.  The Fourier limit for

each case  is given by a horizontal dashed line.  (a) NR = Nr = 95 grids in R and r, or  DR =

0.139 a0, Dr  = 0.125 a0;  (b) Same as (a), but correct FD dispersion relation is used in the

analysis (see text); (c) NR = Nr = 79 or DR = 0.156 a0, Dr = 0.1 50 a0  and correct FD

dispersion relation is used in the analysis.
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